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ABSTRACT

Metasurfaces designed with deep learning approaches have emerged as efficient tools for manipulating electromagnetic waves to achieve beam
steering and power allocation objectives. However, the effects of complex environmental factors like obstacle blocking and other unavoidable
scattering need to be sufficiently considered for practical applications. In this work, we employ an experiment-based deep learning approach
for programmable metasurface design to control powers delivered to specific locations generally with obstacle blocking. Without prior phys-
ical knowledge of the complex system, large sets of experimental data can be efficiently collected with a programmable metasurface to train a
deep neural network (DNN). The experimental data can inherently incorporate complex factors that are difficult to include if only simulation
data are used for training. Moreover, the DNN can be updated by collecting new experimental data on-site to adapt to changes in the envi-
ronment. Our proposed experiment-based DNN demonstrates significant potential for intelligent wireless communication, imaging, sensing,
and quiet-zone control for practical applications.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0184328

I. INTRODUCTION of reconfigurable intelligent surfaces (RISs)'” ' can be digitally
controlled using a field-programmable gate array (FPGA). Pro-
Metasurfaces, consisting of subwavelength artificial array =~ grammable metasurfaces have demonstrated considerable potential

structures on an ultrathin surface, possess a remarkable ability to for various applications, including beam scanning,” " spatial fre-
fully control the properties of electromagnetic (EM) waves including quency multiplexing,” *’ nonreciprocal reflection,”® holographic
their amplitude, phase, polarization, and wavefront structure. This imaging,””"" and orbital angular momentum generation.”"”*

level of control gives rise to exotic EM phenomena, such as Deep learning has become an efficient tool for metasurface
a negative refractive index,"” perfect absorption,’ superlensing,’ inverse designs’’ " together with different techniques, such as gen-
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and invisibility cloaking.‘;‘b However, these metasurfaces are usu- erative models,” " tandem networks, transfer learning,“"45
ally inherently limited to specific functions once their fabrication reinforcement learning,’”"” and hybrid models.” *’ Deep neural
is finalized and thus cannot meet the requirement of dynamic  networks (DNNs) trained with a large dataset of examples can be
control of EM waves. Recently, significant efforts have been devoted employed to generate optimized metasurface designs to specific
to developing active or reconfigurable metasurfaces,” '’ whose desired functionalities. Particularly, the DNN-assisted metasurface
responses can be varied through external tuning. Specifically, inverse design has been applied in power allocation to distribute the
programmable metasurfaces'® as a cost-effective implementation transmitted power to spatially separated users,” " which plays a key
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role in modern wireless communication to reduce interference and
enhance spectral efficiency. However, the impact of complex envi-
ronmental factors, such as the blocking effect of obstacles, needs to
be sufficiently considered for practical applications of power alloca-
tion. Current DNN approaches for such situations™® % often require
a large amount of training data from time-consuming simulations
and face difficulties in simulating ambiguous or unknown factors
(e.g., geometric or material parameters) of the complex obstacles.
The mismatches between the simulation model and the actual sys-
tem may lead to inaccurate predictions of the DNN.”*’ Recently,
enabled by the fast tunability of programmable metasurfaces,
large amounts of experimental data, which inherently incorporate
complex environmental factors, can be efficiently collected for DNN
training to overcome modeling challenges and improve predic-
tion accuracy in the application of cloaking, imaging, and direc-
tion of arrival estimation.”’ ®* The combination of a deep learning
approach and programmable metasurfaces may provide a more
efficient way to extend power allocation applications to realistic
complex environments.

In this work, we employ an experiment-based deep learn-
ing approach with a programmable metasurface to address the
power allocation challenges of real-world complex environments
with obstacle blocks. Without prior physical knowledge of these
complex systems, we train the DNN directly with experimental
data measured across various configurations of the programmable
metasurface. Moreover, we update the DNN to adapt to changes
in the environment with newly collected experimental data. Both
scenarios with and without obstacle blocks are investigated, and
the results demonstrate the effectiveness of the experiment-based
DNN in controlling the transmitted power toward multiple receivers
while showcasing robust adaptability to changes in the environ-
ment. The proposed experiment-based deep learning scheme offers a
promising avenue for leveraging real-world data to achieve accurate
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and efficient programmable metasurface designs, holding potential
for intelligent wireless communication of Wi-Fi and 5G signals in
complex indoor environments.

Il. EXPERIMENT-BASED DEEP LEARNING APPROACH

We aim to control the power transmitted to specific receivers
in a complex environment, generally with an obstacle, using a pro-
grammable metasurface together with an experiment-based deep
learning approach as shown in Fig. 1. A reflective programmable
metasurface featuring tunable reflection phase profiles in the
microwave regime is illuminated with a monochromatic excitation
signal at 11 GHz from a feed horn. The metasurface comprises 20
columns of unit cells, and the reflection phase {¢,} (i = 1,2,...,20)
for each column can be independently controlled. After the reflected
wave is scattered by an obstacle (a metal frame in this case),
the scattered field intensities (Im1, Im2, and I,,3) are measured by
three open-end waveguide probes in specific locations. Our DNN
consists of a forward scattering engine (FSE) and an inverse-
design engine (IDE), as shown in Fig. 1. We first train the FSE in
turning a set of reflection phases {¢;} into the predicted
scattered fields {I}} (j = 1,2,3). During the training, a large number
of randomly generated configurations of {¢, } and the corresponding
intensities of the experimentally measured scattered field {I,,;} by
the three probes are used as training data. The mean squared error
(MSE) between {I}} and {I,} is used as the loss function to
optimize the FSE during the training process. Specifically, the FSE is
a supervised network with 40-100-100-3 fully connected layers. We
opted to split the cyclic reflection phase {¢;} into {cos ¢,, sing,},
resulting in 40 input variables for the 20 columns of reflection phases
to improve training performance (more details can be found in
Sec. III of the supplementary material). The FSE has two hidden
layers, both with 100 neurons, using the exponential linear unit
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FIG. 1. Schematic of the experiment-based DNN for power allocation with a programmable metasurface. The reflection phase profiles {¢; } and corresponding field intensities
{Inj} are regarded as experimental training data to train the integrated DNN, which combines the IDE with the pre-trained FSE, to coordinate the metasurface inverse design

to manipulate the scattered fields on demand.
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(ELU) activation function, and has three output variables for the
predicted intensities {I;}. After training, the FSE acts similarly
as a surrogate solver in replacing the simulation of complex
environments, except now replacing the real physical scattering
process.

Next, the IDE is constructed with reverse topology of 3-50-
50-20 fully connected layers. The input target intensities {I;} are
inversely transformed to the desired reflection phase profile {g,}.
During the training the IDE, the MSE between {I;} and {I;} (IDE
combined with the pre-trained FSE) is used as the loss function and
no experimental data are needed in this stage. Finally, for any target
set of {I;}, the output of the IDE, {¢,}, can now be used as input
of the real metasurface to test whether the experimentally obtained
{Im;} is similar to {I;}. We note that due to the inverse design nature
of the problem, there may be multiple phase profiles {¢;} that can
achieve the same set of target intensities {I;}. The integration of the
IDE and pre-trained FSE as an integrated DNN (an autoencoder
setting for results instead of design parameters) can help mitigate
the nonuniqueness issue.”* We also note that there is an additional
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pre-trained quantization network (see more details in Sec. I of the
supplementary material) when the IDE is connected to FSE. The
quantization network transfers continuous input values to eight pos-
sible discrete values of reflection phases for realistic implementation
of the programmable metasurfaces with FPGA.

11l. PROGRAMMABLE METASURFACE DESIGN
AND DATA COLLECTION

To obtain the experimental training data, we design and
fabricate a programmable metasurface consisting of 20 x 20 unit
cells operating at 11 GHz, in which the reflection of each column
{¢;} can be independently controlled as shown in Fig. 2(a). The
reflected fields depend on the assigned phase profiles {¢;} on the
20 columns of the metasurface. By varying the reflection phase
profiles rapidly in time, a large set of experimental data can be
collected from the three probes within a short time for the DNN
training. In our case, 10000 sets of randomly selected {¢,} are
chosen as input to the metasurfaces, and the experimental training

(b)

Varactor

Middle layer

FIG. 2. Metasurface design and experimental training data collection. (a) Schematic of the programmable metasurface design. (b) Unit cell structure with geometric para-
meters. (c) Measured reflection phase of the metasurface at different bias voltages. The vertical orange line indicates the operating frequency at 11 GHz. (d) Normalized
intensities /m1, Im, and I3 measured from the three probes for the DNN training process in the scenario without obstacle. The color of points denotes the sum of the

intensities from the three probes.
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data {I,5j} can be collected within 10 s. The unit cell structure of
the programmable metasurface is shown in Fig. 2(b). The geomet-
rical parameters of the element are designed as h; = 0.813 mm,
hy =0.1 mm, s=0.6 mm,a=10mm, b=5mm, c=4mm, g=1mm.
Three copper layers are printed on two substrate layers (Rogers
4003C, relative permittivity e = 3.55, loss tangent tan d = 0.0027)
and a bonding layer (Rogers 4450F, &, = 3.52, tand = 0.004). A
varactor diode (MAVR-000120-14110P), as an active component
whose capacitance changes with the bias voltage, is embedded
between two metallic patches on the top layer. Two metallic vias
are used to electrically connect to the negative “~” electrode in the
middle layer and the positive “+” electrode in the bottom layer,
respectively. By applying different bias voltages to the varactor
diode, the dipole resonance of the metasurface can be shifted in
the frequency domain, leading to programmable reflection phase
responses at a fixed working frequency. The measured reflection
phase responses of the metasurface at eight different bias voltages
are shown in Fig. 2(c). At the operating frequency of 11 GHz
indicated by the vertical orange line in the figure, we use eight
discrete phase states with 45-degree gradient covering a 315-degree
range (to be set by FPGA). These phase states are assigned to the
reflection phases {¢,} of the 20 independent columns to create
different phase profiles. The reflection amplitudes for these eight
states have some variation (within 1.7 dB), but this limitation of
the implementation has already been considered in the DNN as the
network is trained directly from experimental data.

(a) (b)
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There is a need to investigate the possible range of measured
intensities {I;j} from the metasurface. In the scenario without the
obstacle placed in front of the metasurface, we randomly generate
10000 sets of phase profiles on the metasurface and use the three
fixed probes to experimentally measure the corresponding intensi-
ties {Inj}. These 10000 sets of experimental training data can be
collected efficiently in 10 s, while it can take much longer if using
simulation methods (see Sec. IT in the supplementary material). The
intensities {I,,;j } are plotted as three-dimensional points in Fig. 2(d).
We note that the {I,;} plotted in the figure are normalized by
Imj /Imax, where Imax denotes the maximum intensity received from
the three probes in the given 10000 sets of measurements. The
normalized intensities Iju1, Im2, and I;y3 less than 0.6 account for
97.9%, 94.1%, and 98.8% of the total data, respectively. In the follow-
ing, these data are used to train the DNN, and any target normalized
intensity values {I;} are assumed to range from 0 to 0.6.

IV. EXPERIMENTAL RESULTS
A. DNN training and testing without obstacles

The proposed experiment-based deep learning approach for
power allocation is first demonstrated in the scenario without
any obstacle. The randomly generated phase profiles {¢,} and the
corresponding measured intensities {I,,j} in Fig. 2(d) are used as
experimental training data to train the FSE first. After that, we train
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FIG. 3. Performance of DNN-assisted power allocation without obstacle. (a)—(c) Three special cases of “001,” “101,” and “000” for the three probes. The black bars, orange
bars, and blue bars represent the target intensities {/;}, the predicted intensities {I;.} from the DNN, and the measured intensities {/;;} from the experiment, respectively.

(d)~(f) General cases for three probes with 3000 sets of test data. The predicted intensities {Ij.} (orange points) and the measured intensities {/;} (blue points) are both
plotted against the target intensities {/;}. The black dashed line is plotted for reference.
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the integrated DNN comprising the IDE and pre-trained FSE. The
details of the DNN training process can be found in Sec. III in
the supplementary material. To test the performance of the trained
DNN, we first demonstrate three special cases called “001,” “101,”
and “000.” The “001” case denotes that the metasurface can manip-
ulate the scattered fields toward one particular probe with a strong
signal while the other two probes obtain weak signals. Similarly, the
“101” case shows that two probes receive strong signals while the
central probe receives a weak signal. The “000” case means mini-
mum or zero target power level for the signals to be received for all
the three probes, in creating a “quiet zone” for the three receivers.
As shown in the black bars in Figs. 3(a)-3(c), we show the target
normalized intensities {I1, 2,13} as {0, 0, 0.55}, {0.55, 0, 0.55}, and
{0, 0, 0} to the trained DNN, corresponding to the three special
cases. The IDE is then used to output the reflection phases {¢, } (after
quantization network) for the metasurface to fulfill the demand tar-
gets. Then, the reflection phases are regarded as the input of the
FSE, generating the predicted intensities {I{,I;,I5} (orange bars)
that agree well with the target values. To experimentally validate the
network predictions, we implement the obtained reflection phases
(from the IDE) to the metasurface and experimentally measure the
intensities {In1, Im2, Im3} from the three probes. As can be seen in
the figure, the experimentally measured results (blue bars) match
well with the targets and network predictions, showing our DNN-
assisted metasurface can manipulate the scattered fields on demands
to realize the three special cases. Particularly, these results enable
application of the programmable metasurface to deliver and damp
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signal received at different locations, pointing to applications for
these metasurfaces as RISs, e.g., for a room decorated with such
metasurfaces to selectively deliver signals at different locations.”’ We
note that the experimental conditions remain the same for the whole
training and test process.

To evaluate the overall performance, our system can arbitrar-
ily control the allocated power to target values within the reasonable
range as shown in Figs. 3(d)-3(f). We input the remaining 3000 test-
ing sets of {I1, 1>, I3} as the target intensities to the trained DNN and
obtained the 3000 sets of {¢,} and predicted intensities {I{, 1,13 }.
In Figs. 3(d)-3(f), the horizontal axes and right-hand vertical axes
denote the target intensities {I1,I2,I3} and predicted intensities
{I{, I3, I}}, respectively. We observe that 3000 orange data points
show a linear distribution around the dashed reference lines I ; =1,
showing that the DNN has been well trained to predict the intensities
of the three probes according to the input targets. The mean squared
errors (MSEs) between {I1,I;,15} and {I{,I5,I;} are calculated and
found to be 0.61 x 1073,0.52 x 107>,0.59 x 107> for the three probes.
Next, we evaluate the performance in an actual experimental test.
The 3000 sets of {¢,} are implemented by the metasurface, and
the corresponding measured intensities {In1,Im2, Im3} are plotted
against the target intensities. As expected, the measured results
denoted by blue points are distributed linearly around the dashed
reference lines I,y; = Ij, indicating the system can control the allo-
cated power at the three probes to target values. The MSEs for
measured results are obtained as 2.4 x 107%,2.2 x 107%,3.1 x 10~
for the three probes, respectively. The errors for predicted and
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FIG. 4. Performance of DNN-assisted adaptive power allocation with an obstacle. (a)-(c) The measured intensities {/; } against target intensities {/; } for the three probes,
using the previous DNN trained without an obstacle. (d)—(f) The measured intensities {/,;} with target intensities {/;} using the on-site updated DNN trained with the

obstacle.
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measured results may come from limited training samples, phase
quantization errors, and noisy data acquisition.

B. DNN training and testing with an obstacle

However, once the ambient conditions change (the emergence
of obstacle blocks, for example), a pre-trained DNN for the spe-
cific scenario without further update may fail to work. Here, we
collect new experimental data on-site and then update the DNN to
adapt to the changes in the environment. To demonstrate the adap-
tivity of this system, a metal frame obstacle is added in between
the metasurface and the three probes as shown in Fig. 1. We
input the same 3000 testing sets of {I, 1,13} to the previous DNN
(trained without obstacle) and obtain the metasurface phase profile
{¢;} but now with an obstacle present in the system. By imple-
menting the 3000 sets of {¢;} on the metasurface, we measure
the corresponding intensities {In1,Im,Im3} and plot them with
the target {I,,I,,Is} as shown in Figs. 4(a)-4(c). For Figs. 4(a)
and 4(b), the measured data points deviate below the dashed
reference lines I; = Ij, which means the signals transmitted to these
two probes are blocked or scattered away by the added obstacle.
For Fig. 4(c), the measured results show a poor linear correlation
with target values affected by the appearance of the obstacle.
The MSEs are 7.5 x 107,22 x 107%,4.6 x 10~ for Figs. 4(a)-4(c),
respectively, showing larger errors compared with the case without
obstacle in Figs. 3(d)-3(f). Therefore, the original DNN trained
without the obstacle performs poorly under the changed ambient
conditions.

To adapt to the new ambient condition, we collect new exper-
imental data again (10 s for 10000 sets) and update the DNN
(10.9 min for DNN training from scratch, and it can be reduced to
2.4 min by reusing the weights in the previous training process, see
details in Sec. IV of the supplementary material). With the updated
DNN, we input the same 3000 sets of testing {I;,, I3} and mea-
sure the intensities {1, Im2, 3 }. As shown in Figs. 4(d)-4(f), the
measured data points restore a linear distribution around the dashed
reference lines with lower MSEs of 2.6 x 107%,1.4 x 107%,3.8 x 1077,
Several results with special target power combinations are also
provided in Sec. V of the supplementary material. It is obvious that
the updated DNN can overcome the blocking effect of the obstacle
and adapt to changes in the environment.

V. DISCUSSION

In this work, we use three probes with specific locations to
collect the experimental training data for the DNN construction.
Our scheme also allows for the control of scattered fields in other
locations by adding more probes, depending on the number of
target users. In addition, we discuss the DNN training time scales
with more neurons when considering a larger metasurface with
more columns N of unit cells with phase profiles {¢,} (i=1,2,...,N)
(see Sec. VI of the supplementary material). Furthermore, the
training time of the DNN can be significantly reduced by employing
transfer learning (TL),"*" in which the weights and biases learned
from the previous training process are reused and fine-tuned in the
subsequent training phase, instead of starting the training process
from scratch. We have demonstrated that the DNN training time
can be significantly reduced to 2.4 min by using TL in Sec. IV of the

pubs.aip.org/aip/aml

supplementary material. Although outside the scope of the current
work, we can also further adopt real-time reinforcement learning™
to have an additional agent to learn the optimal policy iteratively
while interacting with the dynamic environment.

VI. CONCLUSION

The power allocation problems in complex environments with
obstacle blocks are effectively addressed using the experiment-based
DNN approach with a programmable metasurface. Without prior
physical knowledge of complex systems, we directly train the DNN
using experimental data, circumventing the need for complex mod-
eling and time-consuming simulations. Our experimental results
have demonstrated that the experiment-based DNN can effectively
control power distribution transmitted toward multiple receivers
and can be updated through on-site collected data to adapt to
changes in the environment. Our work provides the potential to
leverage real-world data for more accurate and efficient metasurface
designs, achieving intelligent wireless communication such as Wi-
Fi and 5 G signals in complex indoor environments and can also
be applied to applications such as imaging, sensing, and quiet-zone
control. More generally, training DNN with experimental data can
also be directly applicable to inverse problems, such as inverse scat-
tering and imaging, which can be sensitive to on-site information of
practical environments.

SUPPLEMENTARY MATERIAL

See the supplementary material for details on DNN architec-
ture, data acquisition, DNN training process, training time cost, and
alternative Al approaches.
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